资源类型

期刊论文 129

会议视频 1

年份

2024 1

2023 9

2022 10

2021 15

2020 6

2019 10

2018 2

2017 7

2016 3

2015 6

2014 5

2013 7

2012 5

2011 5

2010 5

2009 7

2008 7

2007 9

2006 1

2004 1

展开 ︾

关键词

发酵 2

三氯生 1

三跨连续悬索桥 1

临时矿壁 1

交互反馈 1

产乙酸菌 1

优化 1

传感器 1

修复 1

充填体 1

全局优化 1

分布式经济调度;分布式优化;智能电网;连续时间优化算法;离散优化算法 1

分段线性松弛 1

制药工业 1

加劲梁 1

加压酸浸 1

医学 1

南京长江第四大桥 1

厌氧消化 1

展开 ︾

检索范围:

排序: 展示方式:

Strain and process engineering toward continuous industrial fermentation

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1336-1353 doi: 10.1007/s11705-022-2284-6

摘要: Most current biotechnology industries are based on batch or fed-batch fermentation processes, which often show low productivity and high production costs compared to chemical processes. To increase the economic competitiveness of biological processes, continuous fermentation technologies are being developed that offer significant advantages in comparison with batch/fed-batch fermentation processes, including: (1) removal of potential substrates and product inhibition, (2) prolonging the microbial exponential growth phase and enhancing productivity, and (3) avoiding repeated fermentation preparation and lowering operation and installation costs. However, several key challenges should be addressed for the industrial application of continuous fermentation processes, including (1) contamination of the fermentation system, (2) degeneration of strains, and (3) relatively low product titer. In this study, we reviewed and discussed metabolic engineering and synthetic biology strategies to address these issues.

关键词: continuous fermentation     productivity     contamination     strain degeneration     metabolic engineering    

Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production

Qing Li, Yingjie Qin, Yunfei Liu, Jianjun Liu, Qing Liu, Pingli Li, Liqiang Liu

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 140-151 doi: 10.1007/s11705-018-1714-y

摘要: Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated corn stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L?h) and a yield of 86.31%. In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L?h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from corn stover.

关键词: corn stover     hydrolysate     acid retardation     continuous-effect membrane distillation     ethanol fermentation    

Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor

Sheng CHANG, Jianzheng LI, Feng LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 140-148 doi: 10.1007/s11783-010-0258-2

摘要: An anaerobic contact reactor (ACR) system comprising a continuous flow stirred tank reactor (CSTR) with settler to decouple the hydraulic retention time (HRT) from solids retention time (SRT) was developed for fermentative hydrogen production from diluted molasses by mixed microbial cultures. The ACR was operated at various volumetric loading rates (VLRs) of 20–44 kgCOD·m ·d with constant HRT of 6 h under mesophilic conditions of 35°C. The SRT was maintained at about 46–50 h in the system. At the initial VLR of 20 kgCOD·m ·d , the hydrogen production rate dropped from 22.6 to 1.58 L·d as the hydrogen was consumed by the hydrogentrophic methanogen. After increasing the VLR to 28 kgCOD·m ·d and discharging the sludge for 6 consecutive times, the hydrogentrophic methanogens were eliminated, and the hydrogen content reached 36.4%. As the VLR was increased to 44 kgCOD·m ·d , the hydrogen production rate and hydrogen yield increased to 42.1 L·d and 1.40 mol H ·molglucose-consumed , respectively. The results showed that a stable ethanol-type fermentation that favored hydrogen production in the reactor was thus established with the sludge loading rate (SLR) of 2.0–2.5 kgCOD·kgMLVSS ·d . It was found that the ethanol increased more than other liquid fermentation products, and the ethanol/acetic acid (mol/mol) ratio increased from 1.27 to 2.45 when the VLR increased from 28 to 44 kgCOD·m ·d , whereas the hydrogen composition decreased from 40.4% to 36.4%. The results suggested that the anaerobic contact reactor was a promising bioprocess for fermentative hydrogen production.

关键词: fermentative hydrogen production     anaerobic contact reactor (ACR)     sludge loading rate (SLR)     butyric acid-type fermentation     ethanol-type fermentation    

Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred

Gefu ZHU, Chaoxiang LIU, Jianzheng LI, Nanqi REN, Lin LIU, Xu HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 143-150 doi: 10.1007/s11783-012-0456-1

摘要: A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD?m ·d , HRT of 8h, and temperature of 35°C for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD?m ·d on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493 mg·L in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1–4.5, -250–(-290) mV, and 230–260 mgCaCO ?L . The specific hydrogen production rate of anaerobic activated sludge was 0.1 L?gMLVSS ·d and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

关键词: fermentative hydrogen production     continuous stirred tank reactor (CSTR)     specific hydrogen production rate     beet sugar factory wastewater     ethanol-type fermentation    

Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous

Min GOU,Jing ZENG,Huizhong WANG,Yueqin TANG,Toru SHIGEMATSU,Shigeru MORIMURA,Kenji KIDA

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 368-380 doi: 10.1007/s11783-015-0815-9

摘要: The microbial community structures of two mesophilic anaerobic chemostats, one fed with glucose, the other with starch as sole carbon sources, were studied at various dilution rates (0.05–0.25 d for glucose and 0.025–0.1 d for starch) during two years continuous operation. In the glucose-fed chemostat, the aceticlastic methanogen spp. and hydrogenotrophic methanogen spp. predominated at low dilution rates, whereas spp. and the hydrogenotrophic spp. predominated together when dilution rates were greater than 0.1 d . Bacteria affiliated with the phyla Bacteroidetes, Spirochaetes, and Actinobacteria predominated at dilution rates of 0.05, 0.1, and 0.15 d , respectively, while Firmicutes predominated at higher dilution rates (0.2 and 0.25 d ). In the starch-fed chemostat, the aceticlastic and hydrogenotrophic methanogens coexisted at all dilution rates. Although bacteria belonging to only two phyla were mainly responsible for starch degradation (Spirochaetes at the dilution rate of 0.08 d and Firmicutes at other dilution rates), different bacterial genera were identified at different dilution rates. With the exception of Archaea in the glucose-fed chemostat, the band patterns revealed by denaturing gradient gel electrophoresis (DGGE) of the microbial communities in the two chemostats displayed marked changes during long-term operation at a constant dilution rate. The bacterial community changed with changes in the dilution rate, and was erratic during long-term operation in both glucose-fed and starch-fed chemostats.

关键词: microbial community     glucose degradation     starch degradation     dilution rate     continuous methane fermentation     phylogenetic analysis    

Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic

K. Manikandan, T. Viruthagiri

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 240-249 doi: 10.1007/s11705-009-0205-6

摘要: Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting and nonstarch digesting and sugar fermenting in batch fermentation. Experiments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65°C and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30°C and 5.5, respectively. The wheat bran flour solution equivalent to 6% ( / ) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermentation of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus and nonamylolytic sugar fermenting .

关键词: simultaneous saccharification and fermentation (SSF)     starch     coculture fermentation     statistical experimental design     bioethanol     Monod model    

The role of lipids in fermentative propionate production from the co-fermentation of lipid and food waste

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1686-0

摘要:

● Lipid can promote PA production on a target from food waste.

关键词: Acidogenic fermentation     Microbial community     Volatile fatty acid     Propionate     Food waste     Lipid    

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 453-460 doi: 10.1007/s11705-012-1210-8

摘要: Large waste water disposal was the major problem in microbial lipid fermentation because of low yield of lipid. In this study, the repeated batch fermentation was investigated for reducing waste water generated in the lipid fermentation of an oleaginous yeast CX1 strain. The waste fermentation broth was recycled in the next batch operation after the cells were separated using two different methods, centrifugation and flocculation. Two different sugar substrates, glucose and inulin, were applied to the proposed operation. The result showed that at least 70% of the waste water was reduced, while lipid production maintained satisfactory in the initial four cycles. Furthermore, it is suggested that CX1 cells might produce certain naturally occurring inulin hydrolyzing enzyme(s) for obtaining fructose and glucose from inulin directly. Our method provided a practical option for reducing the waste water generated from microbial lipid fermentation.

关键词: batch fermentation     microbial lipid     Trichosporon cutaneum CX1     flocculation     waste water recycle    

Ant colony optimization in continuous problem

YU Ling, LIU Kang, LI Kaishi

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 459-462 doi: 10.1007/s11465-007-0079-6

摘要: Based on the analysis of the basic ant colony optimization and optimum problem in a continuous space, an ant colony optimization (ACO) for continuous problem is constructed and discussed. The algorithm is efficient and beneficial to the study of the ant colony optimization in a continuous space.

关键词: beneficial     algorithm     efficient     continuous     ACO    

Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under

Yinxiu CAO, Hongchi TIAN, Kun YAO, Yingjin YUAN

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 318-324 doi: 10.1007/s11705-010-1026-3

摘要: Due to its merits of drought tolerance and high yield, sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production. Very high gravity (VHG) technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials. However, this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash. To overcome this problem, cellulase was added to reduce the high viscosity, and the optimal dosage and treatment time were 8 U/g (sweet potato powder) and 1 h, respectively. After pretreatment by cellulase, the viscosity of the VHG sweet potato mash (containing 284.2 g/L of carbohydrates) was reduced by 81%. After liquefaction and simultaneous saccharification and fermentation (SSF), the final ethanol concentration reached 15.5% (v/v), and the total sugar conversion and ethanol yields were 96.5% and 87.8%, respectively.

关键词: bioethanol     sweet potato     very high gravity     viscosity reduction     simultaneous saccharification and fermentation    

Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects

Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG

《环境科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 375-379 doi: 10.1007/s11783-009-0148-7

摘要: Biological hydrogen production by dark fermentation is an important part of biological hydrogen production technologies. China is a typical developing country that heavily relies on fossil fuels; thus, new, clean, and sustainable energy development turns quite urgent. It is delightful that Chinese government has already drawn up several H2 development policies since 1990s and provided financial aid to launch some H development projects. In this paper, the research status on dark fermentative hydrogen production in China was summarized and analyzed. Subsequently, several new findings and achievements, with some of which transformed into scale-up tests, were highlighted. Moreover, some prospecting coupling processes with dark fermentation of hydrogen production were also proposed to attract more research interests in the future.

关键词: biological hydrogen production     dark fermentation     overview     prospects    

Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates

Jinchao WEI, Qipeng YUAN, Tianxin WANG, Le WANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 57-64 doi: 10.1007/s11705-009-0295-1

摘要: Xylitol, a five-carbon sugar alcohol, is a valuable sugar substitute, and widely used in the pharmaceutical, odontological and food industry due to its interesting properties. In the past decades, the xylitol industry has grown rapidly and more attention has been focused on xylitol purification, which possesses an important proportion of the whole industry. In our paper, the purification and crystallization of xylitol fermentation broth by biotechnology using corncob hydrolysates as substance were studied. An initial xylitol fermentation broth was decolored with activated carbon (1% M-1, 60°C, 165rpm), desalted with a combination of two ion-exchange resins (732 and D301), and residual sugars were separated with UBK-555(Ca). Then the solution was vacuum-concentrated up to supersaturation (750g/L xylitol). After adding 1% xylitol crystal seeds, the supersaturated solution was cooled to −20°C for 48h. The crystalline xylitol of a regular tetrahedral shape with purity 95% and crystallization yield 60.2% was obtained from the clarified xylitol fermentation broth. An intact, economical and environmental-friendly route of purification and crystallization of xylitol from fermentation of corncob hydrolysates was obtained, and its experimental procedure and data provided a sound basis for large-scale industrial production.

关键词: ion-exchange     activated     supersaturation     tetrahedral     substitute    

Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1607-2

摘要:

● SMX promotes hydrogen production from dark anaerobic sludge fermentation.

关键词: Sulfamethoxazole     Hydrogen production     Dark anaerobic fermentation     Waste activated sludge    

连续铸钢前沿技术的工程化

干勇

《中国工程科学》 2002年 第4卷 第9期   页码 12-18

摘要:

论述了具有我国自主知识产权的高效连铸和薄板坯连铸工程化关键技术的特点;介绍了连续铸钢领域轻压下、液压非正弦振动、电磁连铸等前沿技术的开发现状;阐述了传统连铸技术超高效率、高品质化及近终形连铸、电磁连铸开发的研发方向。

关键词: 连续铸钢     高效连铸     薄板坯连铸     轻压下     电磁连铸    

Biological pretreatment of corn stover by solid state fermentation of

Jian ZHANG, Xin REN, Wenqun CHEN, Jie BAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 146-151 doi: 10.1007/s11705-012-1220-6

摘要: Biological pretreatment is a promising way to overcome the biorecalcitrance of cleaving the supermolecular structure of lignocellulose by lignin degrading enzymes from microorganisms. Solid state fermentation of corn stover with the white-rot fungus was carried out and the efficiency of this pretreatment was evaluated. The enzymatic hydrolysis yield reached a maximum when the corn stover was biologically pretreated for nine days, and the hydrolysis yield decreased sharply if the solid state fermentation was carried out for more than nine days. A possible explanation for this sharp decrease is that not only the lignin degrading enzymes (LiP and MnP) were secreted, but also other metabolites, which were toxic or fatal to the hydrolysis enzymes resulting in the lower hydrolysis yield were generated during the prolonged period of biopretreatment. These results are useful to help determine the optimal timing and to understand the lignin structure and degradation mechanism in biological pretreatment processes.

关键词: biological pretreatment     Phanerochaete chrysosporium     solid state fermentation     biorecalcitrance     hydrolysis yield    

标题 作者 时间 类型 操作

Strain and process engineering toward continuous industrial fermentation

期刊论文

Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production

Qing Li, Yingjie Qin, Yunfei Liu, Jianjun Liu, Qing Liu, Pingli Li, Liqiang Liu

期刊论文

Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor

Sheng CHANG, Jianzheng LI, Feng LIU

期刊论文

Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred

Gefu ZHU, Chaoxiang LIU, Jianzheng LI, Nanqi REN, Lin LIU, Xu HUANG

期刊论文

Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous

Min GOU,Jing ZENG,Huizhong WANG,Yueqin TANG,Toru SHIGEMATSU,Shigeru MORIMURA,Kenji KIDA

期刊论文

Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic

K. Manikandan, T. Viruthagiri

期刊论文

The role of lipids in fermentative propionate production from the co-fermentation of lipid and food waste

期刊论文

Repeated batch fermentation with water recycling and cell separation for microbial lipid production

Yumei WANG, Wei LIU, Jie BAO

期刊论文

Ant colony optimization in continuous problem

YU Ling, LIU Kang, LI Kaishi

期刊论文

Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under

Yinxiu CAO, Hongchi TIAN, Kun YAO, Yingjin YUAN

期刊论文

Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects

Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG

期刊论文

Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates

Jinchao WEI, Qipeng YUAN, Tianxin WANG, Le WANG,

期刊论文

Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation

期刊论文

连续铸钢前沿技术的工程化

干勇

期刊论文

Biological pretreatment of corn stover by solid state fermentation of

Jian ZHANG, Xin REN, Wenqun CHEN, Jie BAO

期刊论文